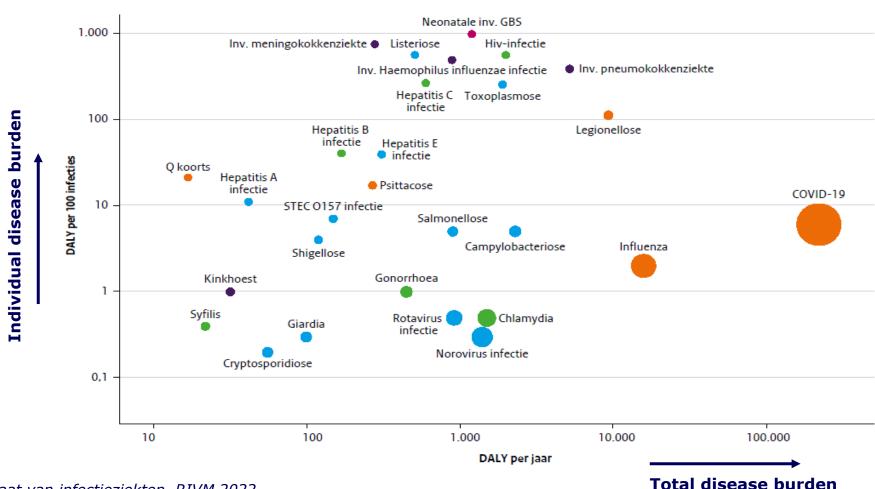


Vaccines and Infectious diseases in The Ageing population (VITAL)

Overview of the project Dr. Jurjen van der Schans

University Medical Center Groningen


Challenge of Life Course Vaccination Strategy

rapidly

AGE GROUPS EXAMPLES OF EXISTING VACCINES POLICIES - Limited recommendations Influenza virus **OLDER ADULTS** - Building on Influenza and Pneumoccocal policies Diptheria Hepatitis B Virus Generally occupational **ADULTS** travel and risk-group focused Diptheria, Tetanus Acellular Pertussis National recommendations **ADOLESCENTS** becoming stronger Diptheria, Tetanus, **INFANTS** Strong national and global Acellular Pertussis recommendations in place Human Papilloma VIrus CHILDREN Influenza Virus - High emerging interest PRE-NATAL Pertussis - Vaccine policies developing Tetanus

The Burden of Infectious Diseases without Vaccination

The Cost of No Vaccination

Direct medical impact

- ☐ Hospitalisations/Healthcare expenses
- ☐ Quality of Life
- ☐ Mortality

Direct non-medical impact

Patient and caregiver's costs

Indirect societal impact

- ☐ Productivity losses
- Social protection costs
- ☐ Foregone taxes

Macroeconomic impact

The Cost of No Vaccination

Direct medical impact

- ☐ Hospitalisations/Healthcare expenses
- ☐ Quality of Life
- ☐ Mortality

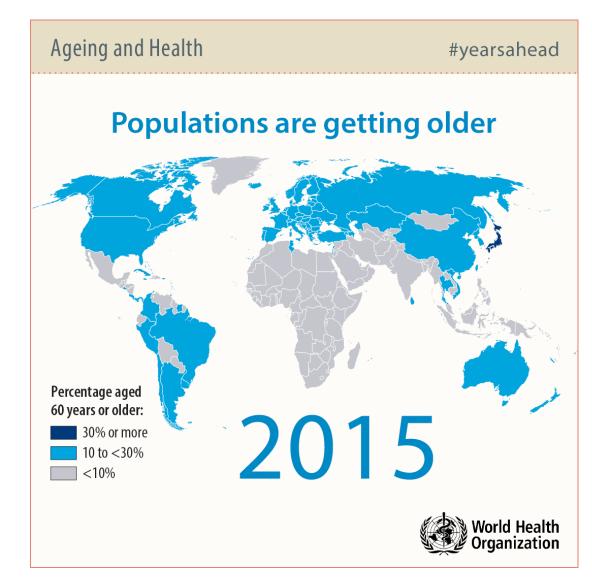
Direct non-medical impact

□ Patient and caregiver's costs

Indirect societal impact

- □ Productivity losses → Flu and cold ~€1 billion
- ☐ Social protection costs
- ☐ Foregone taxes

Macroeconomic impact



The Demographic Challenge

- Increasing infectious disease-related health problems as the percentage of aging adults in the population is increasing
- Decline in vaccination and immune responses with advancing age (Chronological versus biological age)

Heterogeneity of the Ageing Population

Brodin et al. 2018

Targeted Immunization of Next Generation Vaccines

Current practice

You are 60 and are now eligible for vaccinations.

Standard letter only

Offered to all 60+ within NIP:

Influenza (seasonal)

> inactivated split virus

Pneumococci

> polysaccharide subunit

COVID-19

> mRNA

and

Personal immunization profile

Vaccinating **Elderly for Healthy Ageing**

Offered to 60+ and recommend to those in need, choice available:

Influenza (seasonal)

- > inactivated split virus
- > adjuvans, mRNA

Pneumococci

- > polysaccharide subunit
- > conjugated vaccine

COVID-19

- > mRNA
- > subunit

Diphteria, tetanus, pertussis

> subunit+adjuvans

Herpes zoster (gordelroos)

- > live attenuated
- > subunit

RS virus (>2023)

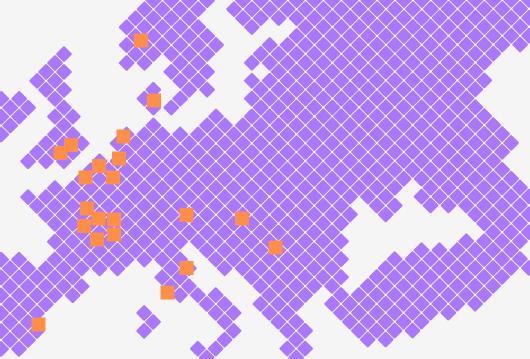
- > subunit

/ Page number

VITAL consortium:

Moving a vaccination program for older adults forward

Aim: Provide evidence-based knowledge to develop targeted and efficient vaccination strategies to improve healthy aging


 Identify and construct vaccination strategies that can effectively protect the ageing population

 Visualize the burden of disease and potential downstream effects of vaccine preventable diseases

 Present efficiency scenarios in vaccine implementation through modelling exercises

 Enable persuasive communication and education on results and solutions to those concerned

 Demonstrating that a multidisciplinary approach may increase vaccine use

24 partners: 17 public, 7 private

Vaccinating Elderly for Healthy Ageina

Standard **METHODS** and **PROTOCOLS**

for assessment of infectious disease burden in ageing adults

DATABASE

on infectious disease variables in ageing adults across Europe

WP2/

BIOMARKERS

and other factors of age-related changes in vaccine response

study on changes in response to

INFLUENZA and **PNEUMOCOCCAL**

> vaccines with age

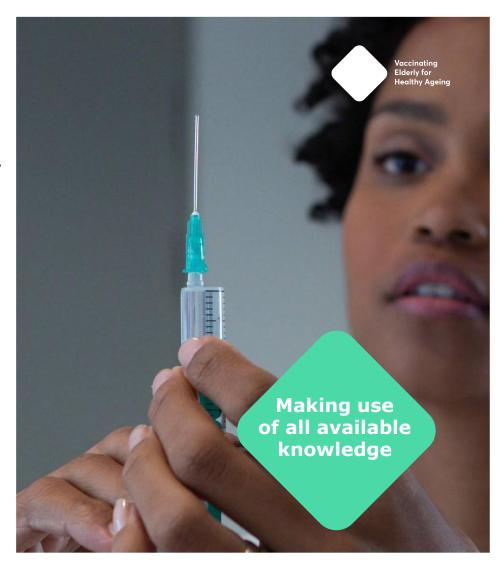
KEY(OUTPUIS®

Build sustainable health-care professional TRAINING and **EDUCATION** on vaccination of ageing adults

Vaccinating **Elderly for Healthy Ageing** WP4

PERCEPTIONS of ageing adults and health care professionals on vaccine acceptance

Understand


OUTCOME models with scenario-testina of strategies for vaccination of

ageing adults

Learnings

- Insight into immune responsiveness in the ageing population and the contributing intrinsic and extrinsic factors
- Links to be made between frailty-level, type of infection, health care exposure, and age, with the vaccine immune response for their economic value assessment.
- Strategies to communicate with and educate all stakeholders working with older adults
- > **Strengthening** the competitiveness and leadership role on vaccine research & implementation in Europe
- > **Interaction** with regulatory agencies to update the impact of the results on future regulatory approaches

Optimization of national vaccination programs

- Heterogeneity of population in (personalized) vaccination
- > Regular and dynamic (re)assessments
- Early and proactive (economic) evaluations
- Account for the wide range of benefits
- Trade-off between data dependency and uncertainty
- Consider vaccination to be an **investment** in the health and economy of tomorrow

Thank you!

J.van.der.Schans@umcg.nl

Country score tool to assess readiness and guide evidence generation of immunization programs in aging adults in Europe

Thi Hao Pham^{1,2*}, Ekkehard Beck³, Maarten J. Postma^{1,4,5}, Bertalan Németh⁶, Tamás Ágh⁶, Chiara de Waure⁷, David M. Salisbury⁸, Nynke Nutma⁹ and Jurjen van der Schans^{1,4*}

¹Unit of Global Health, Department of Health Sciences, University Medical Center Groningen, Groningen, Netherlands, ²Asc Academics, Groningen, Netherlands, ³Department of Vaccines Value Evidence, GlaxoSmithKline, Wavre, Belgium, ⁴Department of Economics, Econometrics & Finance, University of Groningen, Groningen, Netherlands, ⁵Centre of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia, ⁶Syreon Research Institute, Budapest, Hungary, ⁷Department of Medicine and Surgery, University of Perugia, Perugia, Italy, ⁸Royal Institute International Affairs, Chatham House, London, United Kingdom, ⁹RIVM, The Dutch National Institute for Public Health and the Environment, Bilthoven, Netherlands

